Severus detects somatic structural variation and complex rearrangements in cancer genomes using long-read sequencing – Nature Biotechnology

Cosenza, M. R., Rodriguez-Martin, B. & Korbel, J. O. Structural variation in cancer: role, prevalence, and mechanisms. Annu. Rev. Genomics Hum. Genet. 23, 123–152 (2022).
Google Scholar
Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).
Google Scholar
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
Google Scholar
Carvalho, C. M. B. & Lupski, J. R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 17, 224–238 (2016).
Google Scholar
Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).
Google Scholar
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2015).
Google Scholar
Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017).
Google Scholar
Wala, J. A. et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 28, 581–591 (2018).
Google Scholar
Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).
Google Scholar
Fan, X., Abbott, T. E., Larson, D. & Chen, K. BreakDancer: identification of genomic structural variation from paired-end read mapping. Curr. Protoc. Bioinformatics 45, 15.6.1–15.6.11 (2014).
Google Scholar
Chaisson, M. J. P. et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10, 1784 (2019).
Google Scholar
Zook, J. M. et al. A robust benchmark for detection of germline large deletions and insertions. Nat. Biotechnol. 38, 1347–1355 (2020).
Google Scholar
Wagner, J. et al. Curated variation benchmarks for challenging medically relevant autosomal genes. Nat. Biotechnol. 40, 672–680 (2022).
Google Scholar
Zarate, S. et al. Parliament2: accurate structural variant calling at scale. Gigascience 9, giaa145 (2020).
Google Scholar
Jiang, T. et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 21, 189 (2020).
Google Scholar
Smolka, M. et al. Detection of mosaic and population-level structural variants with Sniffles2. Nat. Biotechnol. 42, 1571–1580 (2024).
Sedlazeck, F. J. et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods 15, 461–468 (2018).
Google Scholar
Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).
Google Scholar
Lin, J.-H., Chen, L.-C., Yu, S.-C. & Huang, Y.-T. LongPhase: an ultra-fast chromosome-scale phasing algorithm for small and large variants. Bioinformatics 38, 1816–1822 (2022).
Google Scholar
Mahmoud, M., Doddapaneni, H., Timp, W. & Sedlazeck, F. J. PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation. Genome Biol. 22, 268 (2021).
Google Scholar
Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).
Google Scholar
Sakamoto, Y. et al. Long-read sequencing for non-small-cell lung cancer genomes. Genome Res. 30, 1243–1257 (2020).
Google Scholar
Sakamoto, Y. et al. Phasing analysis of lung cancer genomes using a long read sequencer. Nat. Commun. 13, 3464 (2022).
Google Scholar
Fujimoto, A. et al. Whole-genome sequencing with long reads reveals complex structure and origin of structural variation in human genetic variations and somatic mutations in cancer. Genome Med. 13, 65 (2021).
Google Scholar
Rausch, T. et al. Long-read sequencing of diagnosis and post-therapy medulloblastoma reveals complex rearrangement patterns and epigenetic signatures. Cell Genom. 3, 100281 (2023).
Google Scholar
Rossi, N. M. et al. Extrachromosomal amplification of human papillomavirus episomes is a mechanism of cervical carcinogenesis. Cancer Res. 83, 1768–1781 (2023).
Google Scholar
Zhou, L. et al. Long-read sequencing unveils high-resolution HPV integration and its oncogenic progression in cervical cancer. Nat. Commun. 13, 2563 (2022).
Google Scholar
Akagi, K. et al. Intratumoral heterogeneity and clonal evolution induced by HPV integration. Cancer Discov. 13, 910–927 (2023).
Google Scholar
Hadi, K. et al. Distinct classes of complex structural variation uncovered across thousands of cancer genome graphs. Cell 183, 197–210 (2020).
Google Scholar
Aganezov, S. & Raphael, B. J. Reconstruction of clone- and haplotype-specific cancer genome karyotypes from bulk tumor samples. Genome Res. 30, 1274–1290 (2020).
Google Scholar
Shale, C. et al. Unscrambling cancer genomes via integrated analysis of structural variation and copy number. Cell Genom. 2, 100112 (2022).
Google Scholar
Choo, Z.-N. et al. Most large structural variants in cancer genomes can be detected without long reads. Nat. Genet. 55, 2139–2148 (2023).
Google Scholar
Shiraishi, Y. et al. Precise characterization of somatic complex structural variations from tumor/control paired long-read sequencing data with nanomonsv. Nucleic Acids Res. 51, e74 (2023).
Google Scholar
Elrick, H. et al. SAVANA: reliable analysis of somatic structural variants and copy number aberrations in clinical samples using long-read sequencing. Preprint at bioRxiv https://doi.org/10.1101/2024.07.25.604944 (2024).
Park, J. et al. DeepSomatic: accurate somatic small variant discovery for multiple sequencing technologies. Preprint at bioRxiv https://doi.org/10.1101/2024.08.16.608331 (2024).
O’Neill, K. et al. Long-read sequencing of an advanced cancer cohort resolves rearrangements, unravels haplotypes, and reveals methylation landscapes. Cell Genom. 4, 100674 (2024).
Google Scholar
Bignell, G. R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 17, 1296–1303 (2007).
Google Scholar
Lee, Y. & Lee, H. Integrative reconstruction of cancer genome karyotypes using InfoGenomeR. Nat. Commun. 12, 2467 (2021).
Google Scholar
English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck, F. J. Truvari: refined structural variant comparison preserves allelic diversity. Genome Biol. 23, 271 (2022).
Google Scholar
Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).
Google Scholar
Kirsche, M. et al. Jasmine and Iris: population-scale structural variant comparison and analysis. Nat. Methods 20, 408–417 (2023).
Google Scholar
Denti, L., Khorsand, P., Bonizzoni, P., Hormozdiari, F. & Chikhi, R. SVDSS: structural variation discovery in hard-to-call genomic regions using sample-specific strings from accurate long reads. Nat. Methods 20, 550–558 (2022).
Google Scholar
Wang, S. et al. De novo and somatic structural variant discovery with SVision-pro. Nat. Biotechnol. 43, 181–185 (2024).
Chen, Y. et al. Deciphering the exact breakpoints of structural variations using long sequencing reads with DeBreak. Nat. Commun. 14, 283 (2023).
Google Scholar
Kolmogorov, M. et al. Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation. Nat. Methods 20, 1483–1492 (2023).
Google Scholar
Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).
Google Scholar
Li, H. et al. A synthetic-diploid benchmark for accurate variant-calling evaluation. Nat. Methods 15, 595–597 (2018).
Google Scholar
Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).
Google Scholar
Steinberg, K. M. et al. Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res. 24, 2066–2076 (2014).
Google Scholar
Espejo Valle-Inclan, J. et al. A multi-platform reference for somatic structural variation detection. Cell Genom. 2, 100139 (2022).
Google Scholar
Velazquez-Villarreal, E. I. et al. Single-cell sequencing of genomic DNA resolves sub-clonal heterogeneity in a melanoma cell line. Commun. Biol. 3, 318 (2020).
Google Scholar
Paulin, L. F. et al. The benefit of a complete reference genome for cancer structural variant analysis. Preprint at medRxiv https://doi.org/10.1101/2024.03.15.24304369 (2024).
Fang, L. T. et al. Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing. Nat. Biotechnol. 39, 1151–1160 (2021).
Google Scholar
Talsania, K. et al. Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies. Genome Biol. 23, 255 (2022).
Google Scholar
McDaniel, J. H. et al. Development and extensive sequencing of a broadly-consented Genome in a Bottle matched tumor–normal pair. Preprint at bioRxiv https://doi.org/10.1101/2024.09.18.613544 (2024).
Zhao, Q. et al. Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line. Proc. Natl Acad. Sci. USA 106, 1886–1891 (2009).
Google Scholar
Akdemir, K. C. et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat. Genet. 52, 294–305 (2020).
Google Scholar
Schloissnig, S. et al. Long-read sequencing and structural variant characterization in 1,019 samples from the 1000 Genomes Project. Preprint at bioRxiv https://doi.org/10.1101/2024.04.18.590093 (2024).
Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).
Google Scholar
Peterson, J. F. et al. Acute leukemias harboring KMT2A/MLLT10 fusion: a 10-year experience from a single genomics laboratory. Genes Chromosomes Cancer 58, 567–577 (2019).
Google Scholar
Lansdon, L. A. et al. Successful classification of clinical pediatric leukemia genetic subtypes via structural variant detection using HiFi long-read sequencing. Preprint at medRxiv https://doi.org/10.1101/2024.11.05.24316078 (2024).
Pollard, J. A. et al. Gemtuzumab ozogamicin improves event-free survival and reduces relapse in pediatric KMT2A-rearranged AML: results from the phase III Children’s Oncology Group Trial AAML0531. J. Clin. Oncol. 39, 3149–3160 (2021).
Google Scholar
van Belzen, I. A. E. M. et al. Complex structural variation is prevalent and highly pathogenic in pediatric solid tumors. Cell Genom. 4, 100675 (2024).
Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genetics 54, 1376–1389 (2022).
Google Scholar
Kazantseva, E., Donmez, A., Frolova, M., Pop, M. & Kolmogorov, M. Strainy: phasing and assembly of strain haplotypes from long-read metagenome sequencing. Nat. Methods 21, 2034–2043 (2024).
Google Scholar
Cohen, A. S. A. et al. Genomic answers for children: dynamic analyses of >1,000 pediatric rare disease genomes. Genet. Med. 24, 1336–1348 (2022).
Google Scholar
Martin, M. et al. WhatsHap: fast and accurate read-based phasing. Preprint at bioRxiv https://doi.org/10.1101/085050 (2016).
Alekseyev, M. A. & Pevzner, P. A. Breakpoint graphs and ancestral genome reconstructions. Genome Res. 19, 943–957 (2009).
Google Scholar
Malhotra, A. et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res. 23, 762–776 (2013).
Google Scholar
Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Google Scholar
Magi, A. et al. GASOLINE: detecting germline and somatic structural variants from long-reads data. Sci. Rep. 13, 20817 (2023).
Google Scholar
Keskus, A., Bryant, A. & Kolmogorov, M. Supporting data for the manuscript ‘Severus: accurate detection and characterization of somatic structural variation in tumor genomes using long reads’. Zenodo https://doi.org/10.5281/zenodo.14541057 (2024).
Keskus, A. et al. KolmogorovLab/Severus: a tool for somatic structural variant calling using long reads. GitHub https://github.com/KolmogorovLab/Severus (2024).
Bryant, A. et al. KolmogorovLab/minda. GitHub https://github.com/KolmogorovLab/minda (2024).